411 research outputs found

    Measuring galaxy segregation using the mark connection function

    Get PDF
    (abridged) The clustering properties of galaxies belonging to different luminosity ranges or having different morphological types are different. These characteristics or `marks' permit to understand the galaxy catalogs that carry all this information as realizations of marked point processes. Many attempts have been presented to quantify the dependence of the clustering of galaxies on their inner properties. The present paper summarizes methods on spatial marked statistics used in cosmology to disentangle luminosity, colour or morphological segregation and introduces a new one in this context, the mark connection function. The methods used here are the partial correlation functions, including the cross-correlation function, the normalised mark correlation function, the mark variogram and the mark connection function. All these methods are applied to a volume-limited sample drawn from the 2dFGRS, using the spectral type as the mark. We show the virtues of each method to provide information about the clustering properties of each population, the dependence of the clustering on the marks, the similarity of the marks as a function of the pair distances, and the way to characterise the spatial correlation between the marks. We demonstrate by means of these statistics that passive galaxies exhibit stronger spatial correlation than active galaxies at small scales (r <20 Mpc/h). The mark connection function, introduced here, is particularly useful for understanding the spatial correlation between the marks.Comment: 6 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    Sun safety in construction: a UK intervention study

    Get PDF
    Background: Interventions to promote sun safety in the UK construction sector are warranted given the high incidence of skin cancer attributable to sun exposure relative to other occupational groups. Aims: To evaluate change in sun safety knowledge and practices among construction workers in response to an educational intervention. Methods: A baseline questionnaire was administered, followed by a bespoke sector-specific DVD-based intervention. At 12-month follow-up participants completed a further questionnaire. Results: Analyses were conducted on a sample of 120 workers (intervention group, n = 70; comparison group, n = 50). At follow-up the proportion of intervention group participants that reported correct sun safety knowledge was not significantly greater than at baseline. However, the intervention group demonstrated significant positive change on nine out of ten behavioural measures, the greatest change being use of a shade/cover when working in the sun followed by regularly checking skin for moles or unusual changes. Conclusions: Exposure to this intervention was linked to some specific positive changes in construction workers’ self-reported sun safety practices. These findings highlight the potential for educational interventions to contribute to tackling skin cancer in the UK construction sector. The findings support the development of bespoke educational interventions for other high-risk outdoor worker groups

    Measuring motion with kinematically redundant accelerometer arrays: theory, simulation and implementation

    Get PDF
    This work presents two schemes of measuring the linear and angular kinematics of a rigid body using a kinematically redundant array of triple-axis accelerometers with potential applications in biomechanics. A novel angular velocity estimation algorithm is proposed and evaluated that can compensate for angular velocity errors using measurements of the direction of gravity. Analysis and discussion of optimal sensor array characteristics are provided. A damped 2 axis pendulum was used to excite all 6 DoF of the a suspended accelerometer array through determined complex motion and is the basis of both simulation and experimental studies. The relationship between accuracy and sensor redundancy is investigated for arrays of up to 100 triple axis (300 accelerometer axes) accelerometers in simulation and 10 equivalent sensors (30 accelerometer axes) in the laboratory test rig. The paper also reports on the sensor calibration techniques and hardware implementation

    The richest superclusters. I. Morphology

    Get PDF
    We study the morphology of the richest superclusters from the catalogues of superclusters of galaxies in the 2dF Galaxy Redshift Survey and compare the morphology of real superclusters with model superclusters in the Millennium Simulation. We use Minkowski functionals and shapefinders to quantify the morphology of superclusters: their sizes, shapes, and clumpiness. We generate empirical models of simple geometry to understand which morphologies correspond to the supercluster shapefinders. We show that rich superclusters have elongated, filamentary shapes with high-density clumps in their core regions. The clumpiness of superclusters is determined using the fourth Minkowski functional V3V_3. In the K1K_1-K2K_2 shapefinder plane the morphology of superclusters is described by a curve which is characteristic to multi-branching filaments. We also find that the differences between the fourth Minkowski functional V3V_3 for the bright and faint galaxies in observed superclusters are larger than in simulated superclusters.Comment: 14 pages, 8 figures, submitted to Astronomy and Astrophysic

    Superclusters of galaxies in the 2dF redshift survey. III. The properties of galaxies in superclusters

    Get PDF
    We use catalogues of superclusters of galaxies from the 2dF Galaxy Redshift Survey to study the properties of galaxies in superclusters. We compare the properties of galaxies in high and low density regions of rich superclusters, in poor superclusters and in the field, as well as in groups, and of isolated galaxies in superclusters of various richness. We show that in rich superclusters the values of the luminosity density smoothed on a scale of 8 \Mpc are higher than in poor superclusters: the median density in rich superclusters is δ≈7.5\delta \approx 7.5, in poor superclusters δ≈6.0\delta \approx 6.0. Rich superclusters contain high density cores with densities δ>10\delta > 10 while in poor superclusters such high density cores are absent. The properties of galaxies in rich and poor superclusters and in the field are different: the fraction of early type, passive galaxies in rich superclusters is slightly larger than in poor superclusters, and is the smallest among the field galaxies. Most importantly, in high density cores of rich superclusters (δ>10\delta > 10) there is an excess of early type, passive galaxies in groups and clusters, as well as among those which do not belong to groups or clusters. The main galaxies of superclusters have a rather limited range of absolute magnitudes. The main galaxies of rich superclusters have larger luminosities than those of poor superclusters and of groups in the field. Our results show that both the local (group/cluster) environments and global (supercluster) environments influence galaxy morphologies and their star formation activity.Comment: 13 pages, 10 figures, submitted to Astronomy and Astrophysic

    Optimizing RuBP regeneration to increase photosynthetic capacity

    Get PDF
    The regeneration of RuBP is a major factor limiting photosynthesis at sub-saturating light levels. Optimizing this process by overexpressing the enzymes sedoheptulose-1,7-bisphosphatase (SBPase) and fructose-1,6-bisphosphate aldolase (FBP aldolase) is predicted to increase wheat photosynthetic capacity. With combined funding from the BBSRC and CIMMYT, transgenic lines have been produced to overexpress either SBPase or FBP aldolase in a common UK wheat cultivar and in two CIMMYT lines. Current efforts are characterizing the most promising lines – that is, with considerably more SBPase or FBP aldolase – for further studies of the effects on photosynthetic capacity
    • …
    corecore